

Qualification of Additively Manufactured Materials for Robotic Spaceflight

Bryan W. McEnerney, R. Peter Dillon, J.P. Borgonia, Andrew A. Shapiro-Scharlotta

October 1, 2018

Agenda

- Overview of Additive Manufacturing at jPL
- NASA & JPL Qualification Methodology
- 3. Specific Material Qualification
 - Ti-6AI-4V
 - AlSi10Mg
- 4. Conclusions
- 5. Acknowledgements

Mars Science Laboratory (Curiosity) / Mars 2020 (Image JPL/NASA)

Additive Manufacturing Technologies Overview

Additive Manufacturing at JPL, briefing

Fused Deposition Melting (FDM) Sentinel-6 Antenna Fixture (Ultem 9085)

Additive Manufacturing Materials

Aluminum and titanium alloys comprise 85% of flight structural components

Ti-6Al-4V produced via EBM (Arcam) process is baseline for flight use due to robust database

Current AM aluminum offerings (AlSi10Mg, Scalmalloy) don't correspond to existing aerospace alloy classes

Polymerics

Focused effort on in-house printing of relevant materials systems for thermal standoffs, dielectrics and test equipment

B-basis analysis used, with Stat17, for Ultem 9085, PEEK, Ultem 1010 and Torlon

Only for <u>non-structural</u> applications

Gradient alloy systems

Research effort into tailored properties and behaviors Will only be used for niche, low volume applications Design specific qualification practices only

NASA Qualification Approach

NASA-STD-603X

AM

Standard for

Crewed

NASA-STD-603X

AM

Standard for

Non-Crewed

NASA-STD-603X

AM

Standard for

Aero

Qualification Approach (cont.)

NASA Non-crewed

Covers all non-crewed spacecraft, including launch vehicles and associated hardware

Will cover parts according to three categories, with sub-categories for risk: Fracture Critical, Structural, Non-Structural

NASA documents expected for release in September 2020

JPL Approach

Temporary approach that will be consistent with the NASA documents Focusing on solutions for three primary systems currently:

Laser Powder Bed Fusion, AlSi10Mg

Electron Beam Powder Bed Fusion, Ti-6Al-4V

Fused Deposition Melting, Various polymers

Approach for each detailed in the following slides

Electron Beam Powder Bed Fusion, Ti-6Al-4V

- Leveraging America Makes Activity
 - B-Basis allowables (static) developed with a partnership between CalRAM (Camarillo, CA) and Northrop Grumman (El Segundo, CA)
 - JPL & NASA are conducting dynamic testing
 - 140 axial fatigue and fracture toughness coupons
 - Properties from -150 °C to 150 °C
 - Facility audits and internal specifications to govern all parts
- Additional testing
 - Build-specific tests required for properties that are deemed design critical (e.g. thermal expansion)
 - Acceptable only for unmanned missions
 - Data required to support manned (e.g. International Space Station) missions
 - Proof testing required on all parts
 - Factors of safety being debated
 - Mechanical pushing for 1.4x yield strength, 1.7x ultimate tensile strength

Planetary Instrument for X-ray Lithochemistry (PIXL), Mars 2020 (Image JPL/NASA)

X-ray bench

Front cover

Mounting frame

Qualification Methodology (AlSi10Mg)

Identification of insertion opportunities

- Baseline properties determined through focused testing over a variety of temperatures (critical to JPL applications)
- Capability determination of thermophysical properties
- Understanding limited design space for non-traditional alloy
- All flight parts until 2020 to be built at JPL (EOS M290)

Additional required efforts

- Quantification of powder and build variability
- Heat treatment and qualification of external vendors
 - JPL-published process of solutionizing for 6 hours at 538 °C, rapid quenching to 25 °C and aging at 158 °C for 12 – 18 hours
- Proof testing

Effects of various quenchants on mechanical behavior Large dot represents mean of 20 samples, as well as high and low values

ABH – as-built and HIP'ped WQ – water quenched GQ – gas quenched (He) GLW – glycol quenched

Heat treatment microstructure

Aging Behavior

Insertion Opportunities

Coring Drill Chassis (Mars 2020)

- Development unit only (not for flight)
- Flight hardware will be machined from single billet
- Built as 3 pieces, machined and bolted together

Justification

- Significant schedule and cost reduction from conventional processes
- Provided significant increase in testing time, due to reduced production schedule

Challenges

- Significant size and residual stresses from quenching
- Proof testing for entire structure

Development Coring Drill, Mars 2020 (Image JPL/NASA)

Conclusions

- 1. Leveraging NASA and Government resources for applicable systems
- 2. JPL developing internal processes to cover 24 month gap
 - 1. Leveraging NASA and internal control methodologies
 - Aggressive proof-testing and mechanical evaluation at critical design points
- 3. Non-destructive evaluation
 - 1. Monitoring progress technically to determine eventual solutions
- 4. Materials & Processes focused on informed decisions for AM insertion onto flight programs.
 - 1. Avoiding improper usage (e.g. flat plate)
 - Understanding complete process flow for post-build challenges (e.g. joining, surface finish, etc.)
 - 3. Understand nature of desired component

Acknowledgements

- Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration
- Additional financial support provided by Mr. Richard Russell (NASA KSC), Dr. F. Hadaegh, Dr. J. Zmuidzinas, and Dr. T. Cwik
- Technical support from Dr. R. Otis, Mr. A. Aljabri, Mr. D. Lewis, Mr. M.D. Knopp.

jpl.nasa.gov